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1. INTRODUCTION

In this paper we present several examples of functions of two variables for
which it is possible to obtain explicit expressions for the Chebyshev approx-
imations by polynomials. The construction of explicit best approximations
for functions of more than one variable has been already accomplished in a
few cases (see, e.g., [7, 9, 10]). A classical problem in Chebyshev approxima-
tion is the determination of the best approximation to x* on [—1, 1] by a
polynomial of degree n — 1. Many of the problems we consider are of this
type. Specifically, we obtain Chebyshev approximations to a large variety
of homogeneous polynomials of degree n on the unit disk by polynomials
of degree n — 1. We consider also the approximation of certain other func-
tions on the disk.

A general setting for the problem of Chebyshev approximation is the
following. Let @ be a compact Hausdorll space, and let C(Z2) denote the
space of continuous real-valued functions on &. Given fe C(2), its norm
is L fll = max{l f(x)] : x € Z]. Let V be an n-dimensional subspace of C(%).
Given fe C(2), the problem of Chebyshev approximation is to find v, €V
such that

[/ — vudl = inf{i f—cl:ve Vi

A signature ¢ on & is a function with finite support, whose nonzero values
are either -1 or —1. We say that o is extremal with respect to V' if there
exists a nonzero positive measure p with carrier in the support of ¢ such that

j’ o(x) o(x) du(x) = 0
forallve V.
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196 GEARHART

For each ve V', we call /'~ ¢ an error function, and we refer to the set
Efv)y = {xeZ: flx) —ov(x) — [0l

as the extreme points of /' — v. Now the characterization of the best approxi-
mations of f out of V is given in the following result of Rivlin and
Shapiro [8].

THEOREM [.1. Let d==inf{|l/ —vi:ve V| Then v.eV satisfies
Wf— v = dif and only if there exists an extremal signature o with support
in Eq(v,) such that (f — v,)e == 0.

This theorem underlies the work in this paper. Some results concerning
the nature of extremal signatures for various subspaces V' are presented in
(2,4,5, 7,9, ]

We will take & to be the unit disk in the plane. Thus,

Z o= (x, vy x4t 1,
and we shall denote by ¢& the set of all (x, v) such that x* — y? = 1. By
P.* we designate the space of real polynomials of degree n in k variables. In
particular, p € P,? has the form

Pl y) = ) Xt

where k + § <2 n and the ¢, are real numbers.

There is a particular extremal signature which occurs quite often in this
paper. Let ¢; <0 ¢y < <+ < ¢y, be angles in [0, 277) and let r => O be given.
Define the signature ¢ on the plane by o(r cos ¢, , rsin ¢;) = (—1)* and
o = 0 otherwise. It is well known [5, 9] that ¢ is extremal with respect to

2 1. We will refer to this kind of extremal signature as an “aiternant of

type 2n.”

2. APPROXIMATION OF XxV1™

Let n and m be arbitrary nonnegaftive integers with # -~ m 7= L. In this
section, we consider the Chebyshev approximation of the function x"y" on
the unit disk & by polynomials in P, ,, ;.

Let U.(x) denote the polynomial of degree & = 0 defined by

Ucos ¢) = sin(k + Dyg/sin ¢.

Thus, U, is the Chebyshev polynomial of degree & of the second kind (sece
[3]. For convenience, we define U/_j(x) - 0 and U_,(x) == —1.
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THEOREM 2.1. For integers n = 0 and m 2= 0 with n -+ m = 1, set

Pr(x, y) = (1/2)"7"(Un(x) U 3) + Unofx) Upeo( )

Then P, ., is an error function of best Chebyshev approximation to x"y™ on 2

out of P%_, . The deviation of the best approximation is (1/2)+m-2,

Proof. 'We observe that

and therefore P, ,, has the form of an error function. Let us first consider
P, ., restricted to ¢Z. Using the trigonometric definition of the polynomials
U, , it is not difficult to show that

K, o sin(n -+ m) @, m odd,

P, w(COs @, sin ¢) =
nnl(€0S ¢ 7) LK o cOS( 4 m1) e, m even,

(2.1

where K, ,, = (—D/2)(1/2)m+#-1 ([t] denotes the largest integer < ).
To show that P, ,, is an error function of best approximation, it suffices
to show that

% Pn,m(x, }’)| L (]/Z)n'i m—1

for all (x, y)e Z. For then there would be an alternate o of type 2(n 4+ m)
on ¢&, with support in the extreme points of P, ,,, such that ¢P, , =0
on Z.
Set x == cos @ and y = cos . Then
Pn,m = (1/2)”171”“l Fw,m((p' 0)
where

Fn,m((pv 9) = (%)

sin(a - 1) @ sin(m -+ 1) 8 + sin(n — 1) @ sin(m — 1) 8
sin ¢ sin 0 )

We need to show that |F, . (¢ &) =<1 for all (¢, 8) such that
cos® ¢ + cos? 8 << 1. If either ¢ == 0 or # = 0, then (x, y) e 82, and here
we already know that | F,, ,, | <0 1. Hence, we need consider only ¢ and 6
in (0, 7). Applying the identity sin(x + ) = sin « cos 8 4 cos a sin 3, to
the numerator of F,, ,, , we obtain

Fo.w = Asinngsin mf -+ cos ng cos mf
where

A = (cos g/sin 0) - (cos O/sin ).

Since ¢ and @ belong to (0,7) and cos? ¢ -+ cos? @ =< 1, it follows that
jcos gfsin ] <C 1 and |cos 8/sin ¢ | =2 1. Hence i A} << 1, and therefore

VF m << Isinng | |sinmf| + | cosng!l{cosmb]|.
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Using the Schwarz inequality, we see that ' /7, ,, | =2 1, as was to be shown.

From this theorem, it is possible to construct certain other best approxima-
tions to x"y™. Let T (x) be the Chebyshev polynomial of the first kind of
degree k [3]. Thus, Ty(cos p) = cos ke for k =0, 1, 2,... . Let p,_,, denote
any error function of best approximation to x”y" out of P2_,, ; on Z. Then

_I ,/\{ 271{:“~ 1 ,,’,,,(X, _}‘) : l
for all (x, y) € Z. Now consider the polynomial
P(x’ J/) — 2-k(n~ m)+1Tk[zrwm—lpn'm(x’ y)] (22)

1t is easy to verify that P is a polynomial of the form x*7y*” - (lower degree
terms), and that furthermore | P(x, y)| =< 2-++=i+1 for all (x, y) € Z. Thus,
by considering Theorem 2.1 we obtain

COROLLARY 2.1. [If Ty(x) is the Chebyshev polynomial of the first kind,
and p,, .. is any best error function for x"y™ on &, then the polynomial (2.2)
is a best error function for x*"y*" on &,

In general, it can be seen that this polynomial (2.2) is distinct from the
Py wm of Theorem 2.1. We suspect therefore that the best Chebyshev approx-
imations to x”y™ on & are not unique. A complete answer to the uniqueness
question is contained in the following theorem.

THEOREM 2.2. The best approximation to x"y™ on & out of P2, . IS
unique only if n =0 or m =0, or n = m = 1. For the case n 2= 1, m =1
and n + m > 3, we have:

(a) If P(x,y) is an error function of best approximation to x"v"™, then
P = Prz,m e (I - X% - ,1'2)Q

for some Qe P2, _,.
(b) There is a polynomial Q. € P%,,, 5., which is not identically zero,
such that
Pﬁr == Pn.m -+ (l - x% — }2) Q*

is an error function of best approximation to x"y™ on % out of P2 ., .. More-
over, Q. has the following property: Given any Q € P2, 5. there corresponds

a constant A = A(Q) > 0 such that for any A with 0 =2 X =2 A,
P+ Xl —x2—yH0

is an error function of best approximation to x"y" on @ out of Pr,,._; .
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The proof of this and related results can be found in [6]. We omit the proof
here as it is somewhat long and merely technical in nature. We observe that
Theorem 2.2 may be viewed as a characterization of the best approximations
to x"y™ on & out of P2, ;. The polynomial Q, in (b) is not unique, and
need satisfy only mild restrictions. In fact, as shown in [6], it is not difficult
to construct many such Q, explicitly.

The uniqueness result for # = 0 or m = 0 can be obtained in a more
general setting.

THEOREM 2.3. Suppose f = f(y) is a continuous function on D. Let p.(y)
be the polynomial of degree k which best approximates f(y) on [—1, 1]. Then
P+ 1S the unique best approximation of f out of P,* on Z.

Proof. If k =0, the result is obvious and so we assume &k 2= 1. It is
clear that p, € P,? is a best approximation to f on 2. Suppose p € P? is
such that p, + p is another best approximation to f on 2. Since p. is char-
acterized by the alternation theorem [3], we can find at least k lines y = y,,
i=1,2,.,k where —1 <y, <<y, < -+ <y, <1 such that each line is
contained in the extremal points of f — p, on &, and f — p, alternates in
sign on these lines. Now, p, is the only best approximation to f on [—1, 1],
and therefore p(0, y) = 0 for all y. Hence, p(x, y) = xP(x, y) for some
Pe P2 . Select h >0 such that [—h, A] x [y,, y:] is contained in the
interior of Z. For definiteness, let us assume that the line y = y, is a nega-
tive line. Then, since p, + p is a best approximation, it follows that for
each xe[—h A, (—U¥p(x,y) =<0, i=1,2,.,k Thus, for each i,
(—1) P(x, y;) <O0if x >0 and (—1)" P(x, y;) = 0 if x < 0, and therefore,
PO, v)=0fori=1,2,.., k. But P(0, -) is a polynomial of degree at most
k — 1. In particular, if kK = 1, then we must conclude that P(x, y) == 0 for
all (x, y) and thus the result is valid when k = 1. For k£ = 2, however, it
follows that P(x, y) = xQ(x, y) for some Qe P2 ,, and thus p(x, y) =
x*Q(x, ¥). Now let x, be such that —/ <C x, < . Then (— 1) Q(x, . ¥;) << 0
fori=1, 2...., k. It follows that the polynomial Q(x,, -) has at least &k — 1
zeros, counting multiplicities. Hence, Q(x,, y) = 0 for all y. But x, was an
arbitrary point in [—/, #], and therefore Q(x, y) = 0 for all (x, y). The
proof is thus complete.

We remark that the proof of this result did not require that & be a disk.
In fact, we could have taken 2 to be any compact set lying between the lines
v =1and y = —1 and whose interior contains the interval (—1, 1) on the
y-axis.
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3. APPROXIMATIONS OBTAINED FROM P, ,

A real homogeneous polynomial of degree iz 2= 1 has the form

Pl 3y = Y iyt 3.1
Joo @}
Using the best approximations of x*~*y* for & = 0, 1, 2,.... n, it is possible
to construct best approximations to a variety of homogeneous polynomials
on &, We state first

THEOREM 3.1. Suppose the ¢, in (3.1) satisfy one of the following two
conditions:

(a) CouCosin = Oand cyory ==0all s — 0,1, 2,....
(b)  Copi1Coesy << Oand coy =0all s--0,1,2

PR

Let P,_;. . fork = 0, 1, 2,..., ndenote any error function of best approximation
10 XYk on G, Then Yo C1Po_ys is an error function of best Chebyshev
approximation to p, (3.1) on & by polynomials in P%_, .

Proof. We will show only case (a), as the proof for case (b) is similar.
Set

1t

P, = Z ()/-‘,Pﬂ-"l.\/x,' .

Je=Q)

From property (a) and (2.1),

Pcos ¢, sing) = Y K,y cos ng

I ever

= A, cos ny

where
Ay = ()"0 Y e
keven
Hence
[A, = (12~ 3 e
even
= (121 Y L)

Je=0

But, we recall that | P,,_,. ;. | = (1/2)» on &, and therefore

i

i PIZ(’\“/‘ .}')‘ :\:: (]/2)” ! Z ' (IIKJ = “ ‘471 ;

A0
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for all (x, y)e &Z. We see now that there is an alternant ¢ of type 27 on ¢,
with support in the extreme points of P, , such that oP, > 0 on Z. Hence,
P, is an error function of best approximation.

From this theorem, we obtain best approximations to a large variety of
homogeneous polynomials on #. Nevertheless, the conditions (a) and (b)
do not include all cases in which 3., ¢, P,_, . is an error function of best
approximation for p, . For example, consider the polynomial

P, = ax™ + bx"-1y (3.2)

where ¢ and b are arbitrary real numbers. Then an error function of
best approximation by polynomials in P2, on Z is given by Q, =
aP,o+ bP,_ 1, where P, x, )= (1/2)"1T,(x} and P, (x, y)=
(1/2)"1 yU,i(x).

Proof. On ¢Z, we have
Q.(cos @, sin ¢) = (1/2)"Ha* + 2172 sin(np + «)

for some angle «x. Now, suppose (x,, Jy) is a point in the interior of & at
which @, attains its largest magnitude on Z. Then

eQ(xq, yo)fey = (1/2y1 bU,_1(x,) = 0.
Thus, bP, 1(x,, ¥) = 0. and therefore,
O, < (12)" L aT(x)l << (1/2)" Y a2 (1/2)"Na® + B3R

for all (x, ¥) € Z. Hence, there is an alternant o of type 2n, with support in
the extreme points of @, such that cQ, = 0.
If @ and b are nonzero, then p, (3.2) does not satisfy the conditions of
Theorem 3.1, but the best error function Q, is of the form Yo ¢oPu i -
We consider now the Chebyshev approximation on & of x™(x? + »%)™ by
polynomials in P2.,, ;. The alternants of type 2k which arose in all the
previous problems do not arise here.

THeOREM 3.2, Let P, .. x, y) be an error function of best approximation
to x*y* on &, in which all powers of y are even. Then

Qn,'m(xa .}') — (__l)m Pn.zm(—\’» (1 - X2 - y2)1/‘2)

is an error function of best Chebyshev approximation to x*(x* + vy on &
out of P2

ni8m--1 -
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Proof. 1t is clear that Q, ,, has the form x*(x* -+ y¥)” -~ {lower degree
terms}, and since x2 - (1 — x2 — y¥)'/2)2 =._ | whenever (x, y) € &, we have

! Q'n,m(xa }')i S | 1/2)""5 21
for all (x, y) € Z. But on the line y — 0 in &, we have
OuonX, O) = (—1)" P ulx, (1 — x273) == (1j2)"52 -0 T, (X)),

Thus, the deviation of Q,, ,, on & is (1/2)* 2L and on the line y = 0 in &,
this deviation is least possible. Hence Q, , is an error function of best
approximation.

Using the best approximations to x"(x? + »p*)™, we can obtain best approx-
imations to certain homogeneous polynomials of the form

{n2l

Pu(x, y) == Z (,kv,‘,n»z/u('_\.z + }.Z)k. (3.2)

hr=)

The result here 1s similar to that of Theorem 3.1.

THEOREM 3.3. Let Q, ,.(x, y) denote any error function of best approxima-
tion to x™(x> + y¥" on & out of P2, . Suppose all the ¢, in (3.2) have the
same sign. Then ngﬁ] €, Qn_si.r 15 @ best error function for P, (3.2) on &
out of PE_,.

Proof. @, .(x,0)is a polynomial of degree #n + 2m, and the coefficient
of the x"+** term is one. Since the deviation of Q, ,.(x, 0) is (1/2)7+2m-1 for
—1 = x =0 1, it follows that

Qundx, 0) = (1/2) 21 T, L, (X).

Hence

[ns2)
Pou(x, 0) = (122t 3 ¢, T(x) = A, T,(x), (3.3)
Jowsth
where

[n/2]

An — (1/2)1112111—1 Z ¢y

K=}
Since all the ¢, have the same sign,
[ns2]

An | = (25N e

k=0
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But, for any (x, y) e 2,

[n/2]
| Pnl < z Lew! ] Qnoorn | <

K=t

Ayl

Hence, the deviation of P, on &Z is | 4, |, and because of (3.3), this deviatio!
is least possible.

4. OTHER EXPLICIT APPROXIMATIONS

Suppose fis a continuous real-valued function on [0, 1] such that f(0) = €
Let m > 1 be an integer, and define the function F e C(Z) by

F(x, y) = f(r) cos mg (4.1

where x = r cos ¢ and y = rsin ¢.

THEOREM 4.1. Let Fe C(Z) be given by (4.1), and let V', denote the spac
of all polynomials of the form x"p(x*) where p € P,}. Then a best Chebyshe
approximation to F on & out of P, is

(@) Oifn<m—1
(b) p.(r¥)rmcos me, if n 2= m, where rp (%) is a best approximatio.
fo f on [05 ]] out Of V[(nfm)/"_’] .

Proof. (a) Letr,e(0, 1] be such that
[ flro) = max  f(r)l.

Then, on the circle of radius r,, there is an alternant o of type 2m, havin,
support in the extreme points of F, such that of > 0 on &. Hence, th
polynomial 0 is a best approximation if # << m — 1.

() Forn = m, let r7p.(r?) be a best approximation to f on [0, 1] ou
of Vi(u—wy 21, and let o be an associated primitive extremal signature. Sinc
f(0) = 0, the support of o consists of N = [(n — m)/2] + 2 points r;, 1
0, 11.

Consider now the error function

E=F—rvp,(r*)cos mep.

Let of@) be given by «(mi/m) == (1) for i =0,1,2,..,2m — 1, witl
a = 0 elsewhere. Define the signature p on the plane by u(x, ) = o(r)«(p,
where x = r cos ¢ and y = r sin ¢. We see that the support of w is containe:
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in the extreme points of E, and that £ - 0 on %. Hence, it suffices to show
that p is extremal with respect to P2

This result can be shown using the method of Shapiro [9]. Indeed, define
the polynomials

N
Px ) = [l (2 0 =)

i1

-1

Pox.p) = |] (@x + b;y)

1==0)

where a;x 4 b,y == 0 is the equation of the line which passes through the
origin and the point (cos wi/m, sinwi/m). Then the support of p coincides
with the set of common roots of P, and P, . In the notation of {9], m, — 2N
and m, = m, and by checking the sign of the Jacobian at the common roots,
we find that u is an extremal signature for polynomials of degree

ny =y — 3 =2n—m)2] +2)+m—3
z=m—-—m-—1t+4)+m-—3

= .

From this result, we obtain a best approximation to F on % out of P,*
by constructing the best approximation to f on [0, 1] out of ¥, _,).2; . This
latter problem can be solved numerically using the Second Remes Algorithm
(see [3, p. 99)). The proof of this statement is a trivial modification of the
convergence proof in [3].

We consider now one further approximation problem in which we take
advantage of the rotation invariance of the disk. Let u,(x, y) designate a
homogeneous, harmonic polynomial of degree k == I, and let A be a fixed
but arbitrary real number. We investigate the Chebyshev approximation of
the polynomial

Py == Ua (X, p) + AXE + p?), n =1
by polynomials in Pj, ,. Without loss of generality, we may assume that

1o (¥ €COS @, F SN @) == #** COS 2nep.

Let us introduce the set X of points (x, y) such that 0 <0 x «< 1 and
—a <y < We will view P,! as a subspace of the space of continuous
functions on X, with a polynomial in P! considered as a function of the
x-variable.
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Lemma 4.1, If p. is a best Chebyshev approximation to x* cos y -+ Ax*
on X out of Pr 4, then p.(x* -+ y?) is a best approximation to P,, on & out
Qf Pﬂzn;l ’

Proof. Since P,, 1s invariant under a rotation through 27/2n, there exists
a best approximation in PZ,_; which is also invariant under a rotation
through 27/2n. But a polynomial in P}, ; with this property must be of the
form p(x* - y?) for some p € P._,. However, for any pe P} ;. we have

max |2 cos 2ne R Ar¥ -l p(r?) = max | x" cos y - Ax" =+ p(x)l.
max | os 2no plr?) Tnax | 3 - plx)l
ge[-m,7) ve[—n,7)

Hence, the desired conclusion follows.

The problem, therefore, is reduced to that of finding a best approximation
to x“ cos y -+ Ax” on X out of PL_,. It is not difficult to characterize the
extremal signatures on X with respect to P} , . Indeed, any such signature ¢
must be one of the following two types.

(1) The support of o consists of two points (x, ¥;) and (x, y,) with
a(x, y;) = —olx, y,). We shall call this signature an “opposite sign” extremal
signature.

(2) The support of o consists of s+ 1 points (x;,y;) where
Xp <Xyt < Xpyq and olx;, y) = —o(x;q, v for i=1,2,..,n We
will refer to this signature as an “‘alternating” extremal signature.

[t turns out that both the “opposite sign™ and the “alternating” extremal
signatures occur in this approximation problem, depending on the value of A,

LEMMA 4.2. A polynomial p € PL_, is a best approximation to x" cos y + Ax*
on X with “opposite sign™ extremal signature if and only if

— (1 — x") =L Ax™ — p(x) == 1 — x" 4.3)

Jfor all x € [0, 1]. Moreover, the deviation of this best approximation on X
is one.

Proof. Suppose pe PL | is a best approximation to x" cos y + Ax" on
X with “opposite sign’” extremal signature. Let (£, 3,) and (£, y,) denote the
support of this extremal signature, and let F(x, y) = x" cos y + Ax" — p(x)
be the error function.

Now, it cannot be the case the ¢ = 0, since F(0, v) = p(0) does not change
sign as y varies. But, for all (x, y) e X,

—x" + Ax® — p(x) <L F(x, y) =0 x" - Ax™ — p(x), (4.4)
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and if x € (0, 1], we have equality on the right only when y = 0, and we
have equality on the left only when y = +=. Hence, we may assume that
¥ =0, and y, = 7.
Now, by hypothesis, F(¢, 0) = —F(£, 7), and this equation implies that
AE" — p(€) = 0. Hence,
max | F(x, y) = | F(§, 0)] = &, (4.5)

(x,»)eX
and therefore, for all x [0, 1]

F(X, 0) — xn L /\X" 7p(x) fg fn
and
F(x,m) = —x" -+ Ax" — p(x) = &

Combining these inequalities, we obtain
,,(éfn . xn) ::: /\xn —P(X) ‘\’é (gn - .X'“)

for all x [0, 1]. In particular, —(é* — x") < (é* — x"), and substituting
x = 1 in this inequality yields ¢ = 1. Thus, (4.3) follows and it is clear from
Eq. (4.5) that the deviation of this best approximation p € PL_, is one.

Conversely, suppose that for some p e P, , inequality (4.3) is satisfied.
Then from (4.4), we have for all (x, y) € X,

—x" — (1 — x") <L F(x, y) < x" A — x¥)
so that
*1 41: F(xv J’) Q 1

But, for the points (1, 0) and (1, =) in X,

FLO) =14+ [X—p(1)] =1
and
Fl,m) = —1 +[A = p(h] = — L

Thus, pc Pl_, is a best approximation with “opposite sign” extremal
signature on the points (1, 0y and (1, 7).

Lemma 4.3. Let B, {x) =1+ x + x* - 4 x"' and define A, as fol-
lows: Ay = 1 and for n = 2,

/A, = inf sup [(x"7t — p(x))/ By 1(x)].

1)€P711 2 eeln 1]

There exists a polynomial in P,._, which satisfies (4.3) if and only if | A| <L A,, .



CHEBYSHEV APPROXIMATION 207

Proof. Suppose first that | A} <A, . If A=0 or n =1, then p(x) = A
will satisfy (4.3). Thus we may assume that A 5= 0 and that n == 2. Now,
0 < | Al <A, implies that 1/]A| > 1/A,, and therefore there exists a
g € PL_, such that

/1A = sup [(x"* — q(x))/Bp_y(%)i

Hence
—*Bn—l(x) < _A(xn-l - q(x)) < BnAl(x)

for all x € [0, 1]. Multiplying this inequality by 1 — x, we obtain
—(1 = x7) < Al —x)x" —q(x) <1 —x7,

and the polynomial between the inequality signs has the form required of
(4.3).

Conversely, suppose that (4.3) holds for some A and pe P;_;. If A =0,
then { A | < A, , so we will assume that [ A] > 0. Also, for n = 1, it is clear
that | A| < A, = 1; and therefore we will take » > 2. Now, dividing (4.3)
by 1 — x, we obtain

—B, 1(x) < (Ax" — p(x)/(1 — x) < Bya(X).
But Ax" — p(x) has a root at x = 1. Hence

Ax? — p(x) = —/\(1 —_ x)(x"‘l - (I(x)),

for some ¢ € P._, . Therefore

|t — (X)) Boa(x)] < 1] A

sothat 1/ A > 1/A,,, and thus | A | < A, .

We notice that 1/A, is defined as the deviation of the best weighted Cheby-
shev approximation on {0, 1] of x*~! by polynomials of degree <{n — 2,
with weight function B,_;(x). Let p,,_, € P._, denote the (unique) polynomial
which attains the deviation 1/2, . Using a complex variable technique similar
to that illustrated in Achieser [1, pp. 278-285], it is possible to obtain explicit
expressions for p,_, and A, . As it is fairly straightforward to apply the
technique in this case, we present only the final result. Fork = 1, 2,..,n — 1,
let o, = e*2k7/m) and let B, satisfy

Bt 421 —2x) B, +1=0, |B:] <L
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Set
) - ] B
Jn o P ,B/; B
and let

X puX)
U{x) = B0 .

If we set x == (1/2)(cos ¢ + 1), with ¢ € [0, 7], then

u(x) = d, Re{ f, (&™)} (Re == real part) (4.6)
where

(l’,, = (‘ 1)’”»71 2B]B‘l [371.—]/"(1 "i)' (B] Bn—])z)-

In particular, for # == 2 we have A, = 1/ d,, ..
Let us summarize the above results. Define A, and B,,_,(x) as in Lemma 4.3.

THEOREM 4.2. Suppose | A | <. A, . Then a polynomial of best approxima-
tion to P, on Z out of Pi, | is p.(x: — y?), where p. € PL_, is given by

@ ANifA=00rn=1
(b) Ax" 4+ A1 — x)(x™ ! — g(x)). where g(x) is any polynomial in
P}, such that

max (v = () Bua()] < 1/ 2]
In particular, this inequality is satisfied by q(x) = p,_(x), where p,_, ¢ P},
is determined by (4.6). Finally, the deviation of Py,(x, ¥} — p.(x2 4+ vy on &
is one.

For the case | A| = A, , we have shown that the best approximation (on
X) is characterized by the “alternating” extremal signature. However, we
have not attempted to construct an explicit best approximation.

5. CONCLUSION

There are functions other than those discussed here, for which it is not
difficult to obtain explicit best approximations. However, the problem of
constructing an explicit best approximation to an arbitrary polynomial of
degree n by polynomials of degree n — 1 on & remains unsolved. From the
results of Theorem 4.2, it appears that the solution of this problem may be
somewhat complicated. We suspect that a large variety of extremal signatures
occur in this problem, and that consequently, it is difficult to construct
solutions explicitly.
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