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I. INTRODUCTION

In this paper we present several examples of functions of two variables for
which it is possible to obtain explicit expressions for the Chebyshev approx­
imations by polynomials. The construction of explicit best approximations
for functions of more than one variable has been already accomplished in a
few cases (see, e.g., [7, 9, 10]). A classical problem in Chebyshev approxima­
tion is the determination of the best approximation to xn on [-Ii, I] by a
polynomial of degree 11 - 1. Many of the problems we consider are of this
type. Specifically, we obtain Chebyshev approximations to a large variety
of homogeneous polynomials of degree n on the unit disk by polynomials
of degree n - I. We consider also the approximation of certain other func­
tions on the disk.

A general setting for the problem of Chebyshev approximation is the
following. Let !2 be a compact HausdorIf space, and let C(!2) denote the
space of continuous real-valued functions on g. Given IE C(!»), its norm
is = max{\ !(x)\ : x E' EO}. Let V be an n-dimensional subspace of C(QC).
Given If'. C(!2), the problem of Chebyshev approximation is to find V* E V
such that

Iii - Dol< II = inf{;:r - 1:1: FE V}.

A signature 0" on QC is a function with finite support, whose nonzero values
are either +1 or ~ I. We say that 0" is extremal with respect to V if there
exists a nonzero positive measure JL with carrier in the support of a such that

Jvex) a(x) dfL(X) = 0

for all v E V.
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For each l' V, we call f I' an error function, and we refer to the set

E[(v) c=:x '/: I(x) {'(x) ! 1':

as the extreme points off - v. Now the characterization of the best approxi­
mations of f out of V is given in the following result of Rivlin and
Shapiro [8].

THEOREM 1.1. Let d c= inf{lif- v : v E V:. Then {' E V satisfies
irJ--· 1'* ~.- d (l and only if there exists an extremal signature u with support
in E[(v*) such that (f -- v*)u O.

This theorem underlies the work in this paper. Some results concerning
the nature of extremal signatures for various subspaces V are presented in
[2,4,5,7,9,11].

We will take g: to be the unit disk in the plane. Thus,

q =- {(x, y) : x 2 -:- .1'2 I:,

and we shall denote by 39 the set of all (x, .1') such that x 2 -+- y2= I. By
pnA we designate the space of real polynomials of degree n in k variables. In
particular, pEPn 2 has the form

where k + s n and the CI., are real numbers.
There is a particular extremal signature which occurs quite often in this

paper. Let f{J1 (P2 'f'2n be angles in [0, 277) and let rObe given.
Define the signature u on the plane by (J(r cos (P, , r sin (1',) = (_-I)i and
(J= 0 otherwise. It is well known [5, 9] that (J is extremal with respect to

P'~-l' We will refer to this kind of extremal signature as an "alternant of
type 2n."

2. ApPROXIVlATlON OF x"y'n

Let nand m be arbitrary nonnegative integers with n I!I I. In this
section, we consider the Chebyshev approximation of the function XII on
the unit disk g, by polynomials in P; I hi-I'

Let Vk(x) denote the polynomial of degree k 0 defined by

sin(k+ I)(p/sin q.

Thus, V k is the Chebyshev polynomial of degree k of the second kind (see
[3]). For convenience, we define V_leX) 0 and V -2(X) == I.
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THEOREM 2.1. For integers n ~, 0 al1d m ? 0 with n + m ? 1, set
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Then P n,m is an error function of best Chebyshev approximation to x"ym all 9J
out of P;+m-1 . The deviation of the hest approximation is (1/2)n+m-1.

ProoF We observe that

Pnom = X"ylll + {lower degree terms]

and therefore Pn,m has the form of an error function. Let us first consider
P n ,," restricted to aq;. Using the trigonometric definition of the polynomials
Uk , it is not difficult to show that

P .( ') jKn rn sin(n 111) rp,cos ' sm I = '
n,m rp, 'P ,Kn,rn COS(11 + m) rp,

m odd,
m even,

(2.1)

where Kn'lII = (_I)[lIIj2J(1/2)n-+nH ([1] denotes the largest integer ~ t).

To show that P n,m is an error function of best approximation, it suffices
to show that

(J /2)n;III-1

for all (x, y) E g. For then there would be an alternate a of type 2(11 + m)

on ?9i, with support in the extreme points of Pn,IfI' such that aPn"1fI ? 0
on :2.

Set x "'~ cos rp and y == cos 8. Then

P",III = 0/2)"+111..1 FlI,m(rp, 8)

where

1) rp sin(m +- 1) 8 + sin(n - 1) rp sin(m - I) f)

sin rp sin 8

We need to show that i Fn,,.,(rp, 8); I for all (rp,8) such that
cos2 qe , cos2 8 ~ 1. If either rp =,c 0 or 8 = 0, then (x, y) E a9J, and here
we already know that I F",,., I 1. Hence, we need consider only rp and 8
in (0,77). Applying the identity sin(e" + (3) = sin 0: cos f3 + cos ex sin f3, to
the numerator of Fn'lII , we obtain

Fnolil =c..• A sin nrp sin 1118 + cos n(r cos m8
where

A .c~ (cos rp/sin 8) . (cos 8/sin rp).

Since rp and 8 belong to (0,77) and cos2 rp +- cos2 8
I cos (p/sin () i 1 and I cos 8/sin rp I 1. Hence A'

I, it follows that
1, and therefore

I sin 11'{' I I sin me 1+ i cos nep : I cos me I.
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Using the Schwarz inequality, we see that F n • II , , I, as was to be shown.
From this theorem, it is possible to construct certain other best approxima­

tions to x"y"'. Let Tk(x) be the Chebyshev polynomial of the first kind of
degree k [3]. Thus, T,cCcos rp) = cos krp for k = 0, 1,2,.... Let Pn.m denote
any error function of best approximation to x"y"' out of P~+1l1--1 on :i'. Then

for all (x, y) E 9. Now consider the polynomial

(2.2)

It is easy to verify that P is a polynomial of the form xknykm -"-- (lower degree
terms), and that furthermore I P(x, Y)I ,,:; 2-" (n+1l1)+1 for all (x, y) E 9. Thus,
by considering Theorem 2.1 we obtain

COROLLARY 2.1. If Tix) is the Chebyshev polynomial of the first kind,

and Pn.m is any best error function for x"y'" on g, then the polynomial (2.2)
is a best error function for x'o'ykm on 9.

In general, it can be seen that this polynomial (2.2) is distinct from the
Pkn •km of Theorem 2.1. We suspect therefore that the best Chebyshev approx­
imations to xnym on 9 are not unique. A complete answer to the uniqueness
question is contained in the following theorem.

THEOREM 2.2. The best approximation to x"ym on 2.t: out of P;+m-1 is

unique only if n = °or m = 0, or n = In = 1. For the case n ? 1, In): l
and n + m ? 3, we have:

(a) If P(x, y) is an error function of best approximation to x"y"', then

P = P",m + (I -- x~- y")Q

for some Q E P~+"'-3 .

(b) There is a polynomial Q* E P~+", __:j' which is not identically zero,

such that

is an error function ofbest approximation to x"y'" on !J:' out 0/ P~+rn-1 . IWore­

over, Q* has the following property: Given any QE P~"m-3 , there corresponds
a constant A = A(Q) 0 such that/or any A. with 0 A. /1.

is an error jimction of best approximation to x"ym on 9 out of P~+m-1 .
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The proof of this and related results can be found in [6]. We omit the proof
here as it is somewhat long and merely technical in nature. We observe that
Theorem 2.2 may be viewed as a characterization of the best approximations
to xny'" on fit out of P~+"'-l' The polynomial Q* in (b) is not unique, and
need satisfy only mild restrictions. In fact, as shown in [6], it is not difficult
to construct many such Q* explicitly.

The uniqueness result for II = 0 or m = 0 can be obtained in a more
general setting.

THEOREM 2.3. Suppose f = fey) is a continuous function on fit. Let p*(y)
be the polynomial of degree k which best approximates fey) on [-1, I]. Then
p* is the unique best approximation off out of Pk2 on !!2.

Proof If k = 0, the result is obvious and so we assume k ;"' I. It is
clear that p* E P k2 is a best approximation to f on 9. Suppose p E P k2 is
such that p* + p is another best approximation to f on fit. Since p* is char­
acterized by the alternation theorem [3], we can find at least k lines y = Yi ,
i = I, 2, ... , k where -I < YI < Y2 < ... < Yk < I such that each line is
contained in the extremal points of f - p* on 9, and f - p* alternates in
sign on these lines. Now, p * is the only best approximation to f on [-1, 1],
and therefore p(O, y) = 0 for all y. Hence, p(x, y) = xP(x, y) for some
P E PZ-1 • Select h > 0 such that [~-h, h] x [YI, yKl is contained in the
interior of 9. For definiteness, let us assume that the line y = Yl is a nega­
tive line. Then, since p* + p is a best approximation, it follows that for
each x E [-h, h], (- L)i p(x, y;) ::~ 0, i = 1, 2, ... , k. Thus, for each i,
(-I)i P(x, Yi) ~ 0 if x > 0 and (-I)i P(x, Yi) ;?: 0 if x < 0, and therefore,
P(O, Yi) = 0 for i = I, 2, ... , k. But P(O, .) is a poLynomial of degree at most
k - 1. Tn particular, if k = I, then we must conclude that P(x, y) = 0 for
all (x, y) and thus the result is valid when k = I. For k ;?: 2, however, it
follows that P(x, y) = xQ(x, y) for some Q E PZ-2 , and thus p(x, y) =
x 2Q(x, y). Now let X o be such that -h .s:; X o ~ h. Then (-I)i Q(xo , yJS:; 0
for i = I, 2, ... , k. It follows that the polynomial Q(xo , .) has at least k -- I
zeros, counting multiplicities. Hence, Q(xo , y) = 0 for all y. But Xo was an
arbitrary point in [-II, h], and therefore Q(x, y) = 0 for all (x, y). The
proof is thus complete.

We remark that the proof of this result did not require that fit be a disk.
In fact, we could have taken fit to be any compact set lying between the lines
y = I and y = -I and whose interior contains the interval (- I, I) on the
y-axIs.
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3. ApPROXIMATIONS OBTAINED FROM P",,,,

A real homogeneous polynomial of degree 11

J) (x v) = '\ (' XII-I,~.,I;
11- '.- ~ k .

o

has the form

(3.1)

Using the best approximations of X,,·lyI' for k = 0, I. 2..... II, it is possible

to construct best approximations to a variety of homogeneous polynomials
on flJ. We state first

THEOREM 3. I. Suppose the ('I, in (3.1) satL~fy one of the jollowing two
conditions:

(a) ('2s('2S~'2

(b) ('2H 1('2<+:3

oand ('28+1 == 0 aJl s ~". 0, J, 2 .
oand ('28 ,= 0 all s 0, I. 2, .

Let Pn-k,kjOr k = 0, 1, 2.... , n denote any errorfunction 0,[best approximation
to xn'h)lk on flJ. Then L~~o CkPn-I"k is an error function of best Chebyshev
approximation to Pn (3.1) on q by polynomials ill P;'-l .

Proof. We will show only case (a). as the proof for case (b) is similar.
Set

1/

Pn I CI,P n- ',.I.: .
7;.0

From property (a) and (2.1).

Pn(cos (p. sin (p) = I C/cK,,_Ic,lc cos Il'f
I even

,- All cos Ilq

where

A n ==(1/2)",t I ('d~l)[k/2J.

k even

Hence

I An = 0/2)"-1 I i ('I

even

u

= (1/2)"-1 I i Cic j.
J.dl

But. we recall that Pn-I"k i

I P,,(x,Y)i

(1/2)"-1 on 9. and therefore

Ii

(1/2)111 I Cj; = All

I, --0
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for all (x, y) E g. We see now that there is an alternant a of type 2/1 on (g,
with support in the extreme points of Pn , such that aPn 0 on fYi. Hence,
PlI is an error function of best approximation.

From this theorem, we obtain best approximations to a large variety of
homogeneous polynomials on !i. Nevertheless, the conditions (a) and (b)
do not include all cases in which 2:~:~o C,'p,,-k,k is an error function of best
approximation for p" . For example, consider the polynomial

(3.2)

where a and b are arbitrary real numbers. Then an error function of
best approximation by polynomials in P;-l on g is given by Qn =

aPn,o + bPn-l.l, where P",o(x, y)c= (I/2)n-1 T,,(x) and P'n-I,I(X, y) =

(I/2)n-1 yU"-l(X).

Proof. On Eg, we have

for some angle c\C. Now, suppose (xu, Yo) is a point in the interior of q at
which Q" attains its largest magnitude on t:i'. Then

Thus, bP",l(XO , Yo) = 0, and therefore,

for all (x, y) E ::i. Hence, there is an alternant a of type 2n, with support in
the extreme points of Qn such that aQ" ~ O.

If a and b are nonzero, then Pn (3.2) does not satisfy the conditions of
Theorem 3.1, but the best error function Qn is of the form 2:~~o CI,Pn-k,1i; •

We consider now the Chebyshev approximation on g of x n(x2 + y2)1II by
polynomials in P;+211l-1 . The alternants of type 2k which arose in all the
previous problems do not arise here.

THEORE\1 3.2. Let Pn .2",(x, y) be an error function of best approximation
to x"y2111 on g, in which all powers oty are even. Then

is an error function ot best Chebysha approximation to x n (x2 + y2)''' on (j:

out at P;.i2m--l .
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Proof It is clear that Qn,m has the form x"(x2 + y2)1II _L {lower degree
terms}, and since x 2 + ((1 - x2 -- y2)1/2)2 I whenever (x, y) E 9, we have

i Q",III(X, y)! ( 1/2)1I:2111-l

for all (x, y) E 9. But on the line y = 0 in 9, we have

Thus, the deviation of Q",m on [zr is (1/2}/ t ZIII-l and on the line y = 0 in 9,
this deviation is least possible. Hence Q",m is an error function of best
approximation.

Using the best approximations to x n(x2 --r YZ)"', we can obtain best approx­
imations to certain homogeneous polynomials of the form

1":2]

P,,(x, y) cc= I C"X"--2/'(X2 --r y2)i':.
1,_cO

The result here is similar to that of Theorem 3.1.

(3.2)

THEOREM 3.3. Let Q".IIICt, y) denote any error jimctiol1 of best approxima­
tion to x"(XZ+ yz)rn on f!j; Ollt 01' P;'+Z1>'--1 . Suppose all the Ck in (3.2) have the
same sign. Then L;,::~] C/cQ"-2/,." is a best error function for Pn (3.2) on 9
out of P~-1 .

Proof Q"",Jx, 0) is a polynomial of degree n --r 2m, and the coefficient
of the Xn+ZTIl term is one. Since the deviation of Qn.m(x, 0) is (I/2)n+Zm-1 for
-1 x I, it follows that

Hence
Inn]

Pn(x,O) = (I/2),,+21J1-1 I ckT,,(x) = A"Tn(x), (3.3)
h~O

where
[n/2]

A" = (I/2)'7+2rn-1 I C".
kcO

Since all the c" have the same sign,

In/zJ
l An I = (I/2)n+ZIIl-1 I I Ck

:'·=11
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But, for any (x, y) E!!2J,

[n/2]

I Pn I :(: I I Ck I i Qn-2k.k i :s::: i An I·
k~U

20

Hence, the deviation of P n on q is I A n I, and because of (3.3), this deviatio!
is least possible.

4. OTHER EXPLICIT ApPROXIMATIONS

Supposefis a continuous real-valued function on [0, 1] such thatf(O) = C
Let m ;?: 1 be an integer, and define the function FE C(!!2J) by

F(x, y) = fer) cos mq!

where x = I' cos ep and y = I' sin cp.

(4. I

THEOREM 4.1. Let FE C(q) be given by (4.1), and let Vic denote the spac
of all polynomials of the form x mp(x2) where p E PI,!' Then a best Chebyshe
approximation to F on 9 out of Pn2 is

(a) 0 ifn :(: 111 - 1

(b) p*(r 2) I'm cos l11ep, if J1 ;?: m, where r"'p*(r 2) is a best approximatio
to f on [0, 1] out of V[(n_m) /2] •

Proof. (a) Let 1'0 E (0, 1] be such that

If(r) cc= max ,FrY.
. O. [0,1]

Then, on the circle of radius 1'0 , there is an alternant u of type 2m, havin,
support in the extreme points of F, such that uF?: 0 on ,ry:. Hence, th
polynomial 0 is a best approximation if n 111 -- I.

(b) For n;?: m, let r 'llp*(r 2) be a best approximation tofon [0, I] ou
of V[(n_'I<) /2] , and let u be an associated primitive extremal signature. Sinc
f(O) = 0, the support of u consists of N = [(n - m)/2] -+ 2 points ri iJ
(0, 1].

Consider now the error function

Let a(ep) be given by Cl:(rri/m) == (-I)i for i = 0, 1,2, ... , 2m -- I, witl
Cl: = 0 elsewhere. Define the signature fJ- on the plane by fJ-(x, y) = u(r)Cl:(ep;
where x = I' cos ep and y = I' sin cpo We see that the support of fJ- is containel



204 GEARHART

in the extreme points of E, and that fLE 0 on (~i. Hence, it suffices to show
that fL is extremal with respect to P,/.

This result can be shown using the method of Shapiro [9]. Indeed, define
the polynomials

y

P1(x. X) == n (x2 .1'2_ r/l
i 1

Pix, .1')
In--ln (a,x -I hi}')
ic=O

where GiX + hiy "''' °is the equation of the line which passes through the
origin and the point (cos 7rilm, sin 7rijm). Then the support of fL coincides
with the set of common roots of PI and P2 • In the notation of [9], 11'11 ...•= 2N
and in2 = 111, and by checking the sign of the Jacobian at the common roots,
we find that fL is an extremal signature for polynomials of degree

1111 + 111 2 _.- 3 = 2([(11- 111)/2] + 2) + in -- J

(11-- 111 -- I + 4) + m - 3

11.

From this result, we obtain a best approximation to F on [i; out of Pn2

by constructing the best approximation to f on [0, 1] out of V[(n-m) /2] . This
latter problem can be solved numerically using the Second Remes Algorithm
(see [3, p. 99]). The proof of this statement is a trivial modification of the
convergence proof in [3].

We consider now one further approximation problem in which we take
advantage of the rotation invariance of the disk. Let uk(x, y) designate a
homogeneous, harmonic polynomial of degree k :::: I, and let ,\ be a fixed
but arbitrary real number. We investigate the Chebyshev approximation of
the polynomial

by polynomials in Pi". 1 • Without loss of generality, we may assume that

112"(" cos (I. I' sin <:p) = ,.211 cos 2t1(p.

Let us introduce the set X of points (x, y) such that 0 x I and
-7r "s;: y 77". We will view PI,.! as a subspace of the space of continuous
functions on X, with a polynomial in PI} considered as a function of the
x-variable.
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LEMMA 4.1. If p* is a best Chebyshev approximation to x" cos y + Ax"
on X out of P;'-l , then P,Jx2 + y2) is a best approximation to P2n on 0J out

of pL-I'

Proof Since P2n is invariant under a rotation through 27T/2n, there exists
a best approximation in P~n-l which is also invariant under a rotation
through 27T/2n. But a polynomial in P~n-l with this property must be of the
form p(x2+ y2) for some p fCC P;'-l' However, for any p fCC P;'-l '. we have

max
rE[O,I]

q.E[-7T,rr]

r211 cos 2nf{J r- Ar 211 .1 p(r2) c= max i xl< cos y
xe[O,I]

y0[-rr,"]

Ax" + p(x)!.

Hence, the desired conclusion follows.
The problem, therefore, is reduced to that of finding a best approximation

to x" cos Y + Axil on X out of P;'-l' It is not difficult to characterize the
extremal signatures on X with respect to P;'-l . Indeed, any such signature CJ

must be one of the following two types.

(l) The support of a consists of two points (x, .h) and (x, Y2) with
a(x, Y1) = -a(x, Y2). We shall call this signature an "opposite sign" extremal
signature.

(2) The support of a consists of n + I points (Xi, y,) where
Xl < x 2 '" < Xn+! and a(xi , Y,) = -a(xi+l' YI+1) for i = 1,2, ... , n. We
will refer to this signature as an "alternating" extremal signature.

It turns out that both the "opposite sign" and the "alternating" extremal
signatures occur in this approximation problem, depending on the value of A.

LEMMA 4.2. A polynomial p E P;'-l is a best approximation to XII cosy + Ax"
on X with "opposite sign" extremal signature if and only if

--(1- xl<) Ax" - p(x) I - Xli (4.3)

for all x E [0, I]. Moreover, the deviation of this best approximation on X
IS one.

Proof Suppose p E P;'-l is a best approximation to XII cos Y -',-- Axil on
X with "opposite sign" extremal signature. Let (~, .h) and (~, Y2) denote the
support of this extremal signature, and let F(x, y) = x" cos Y + Ax" - p(x)
be the error function.

Now, it cannot be the case the ~ = 0, since F(O, y) =- prO) does not change
sign as Y varies. But, for all (x, y) E X,

-x" + Axn - p(x) F(x, y) x" -+-- Ax" -- p(x), (4.4)
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and if x E (0, I], we have equality on the right only when y = 0, and we
have equality on the left only when y = ±17. Hence, we may assume that
Yl'= 0, and y" =, 17.

Now, by hypothesis, F(~, 0) =-F(~, 17), and this equation implies that
I.~n - p(~) = 0. Hence,

max F(x, y) = F(g, 0)1 = g",
(X.y)EX

and therefore, for all x E [0, I]

F(x, 0) = x" + ,\x" - p(x) ,s; ~n

and
F(X,17) = --x" -~ I.Xn - p(X) :?: ~n.

Combining these inequalities, we obtain

(4.5)

for all x E [0, 1]. In particular, -W' - x") ,c:;; (gn - x"), and substituting
x = 1 in this inequality yields g = 1. Thus, (4.3) follows and it is clear from
Eq. (4.5) that the deviation of this best approximation p E P;'-l is one.

Conversely, suppose that for some p E P;'-l' inequality (4.3) is satisfied.
Then from (4.4), we have for all (x, y) E X,

-x" - (1 - x") F(x, y) Xli + (1 - x")

so that
-I F(x, y)S; I.

But, for the points (1, 0) and (1, 17) in X,

F(1, 0) 0= 1 + [I. - p(l)] = 1
and

F(I,7T) = -I -+ [A. --pel)] =-1.

Thus, p E P'~-l is a best approximation with "opposite sign" extremal
signature on the points (I, 0) and (1, 17).

LEMMA 4.3. Let B lI - l(x) = I + x + x 2
••• + X"-l and define An as fol-

lows: Al = 1 andfor 11 2,

1/A.n = in! sup IC,n-l- p(x»/Bn_l(x)!.
PEP n-- 2 ~tc=r '1.1J

There exists a polynomial in P~-l which satisfies (4.3) if and only if i A. I ::S; A. n .
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Proof. Suppose first that I AI :s; A" . If A= °or n = 1, then p(x) = A
will satisfy (4.3). Thus we may assume that A c/= °and that n ~ 2. Now,° I A! ~S; A" implies that 1/1 AI ~ I/An , and therefore there exists a
q E P;-2 such that

1/1AI ~ sup !(X"-l - q(x))/B"_l(X)i
[0,1]

Hence

for all x E [0, 1]. Multiplying this inequality by 1 - x, we obtain

-(1 - x n ) ...:;; -A(I - X)(X"-l - q(x)) ~ 1 - xn ,

and the polynomial between the inequality signs has the form required of
(4.3).

Conversely, suppose that (4.3) holds for some A and p E P~-l' If A= 0,
then! AI ~ An, so we will assume that [ AI > 0. Also, for n = 1, it is clear
that i A I ~ An = 1; and therefore we will take n ~ 2. Now, dividing (4.3)
by 1 - x, we obtain

But Axn - p(x) has a root at x = 1. Hence

Axn - p(x) = -A(l - x)(xn - l - q(x)),

for some q E P~-2 . Therefore

I(X"-l - q(X))/B"_l(X) I ~ 1/[ A [

so that 1/[ A [ ~ 1/,\" , and thus I A I An.
We notice that 1/'\" is defined as the deviation of the best weighted Cheby­

shev approximation on [0, 1] of x n - l by polynomials of degree .S;; n - 2,
with weight function En-l(x). Let Pn-2 E P~-2 denote the (unique) polynomial
which attains the deviation ljAn . Using a complex variable technique similar
to that illustrated in Achieser [1, pp. 278-285], it is possible to obtain explicit
expressions for Pn-2 and An. As it is fairly straightforward to apply the
technique in this case, we present only the final result. For k = 1,2,... ,11 - 1,
let Oil: = ei (2k" I") and let 13k satisfy

f3k2+ 2(1 - 20i,J 13k + 1 = 0,
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If we set x (1/2)(cos 7J + I), with ,p E; [0, IT], then

(Re ~~ real part) (4,6)
where

((31 ... (3n-J f).

In particular, for n 2 we have An =.= l/i d" :.
Let us summarize the above results. Define An and Bn_l(x) as in Lemma 4.3.

THEOREM 4.2. Suppose I A I An. Then a polynomial oj best approxima-

tion to P 2n 0/1 q; out oj Pin-l is p*(x2 -- y2), where P* E P~-l is given by

(a) A, if A = 0 or /1 = 1
(b) Axn + A(I - x)(XU1 - q(x», where q(x) is any polynomial in

P;-2 such that

max l(xu - 1

[0,1]
q(x»IBrH(x)1 I1I ;\ I

In particular, this inequality is satisfied by q(x) = Pn-2(X), where Pn-2 E.= P;-2
is determined by (4.6). Finally, the deviation oj P2U(X, y) - pAx2 + .1'2) on 5J
is one.

For the case i A I Au, we have shown that the best approximation (on
X) is characterized by the "alternating" extremal signature. However, we
have not attempted to construct an explicit best approximation.

5. CONCLUSION

There are functions other than those discussed here, for which it is not
difficult to obtain explicit best approximations. However, the problem of
constructing an explicit best approximation to an arbitrary polynomial of
degree n by polynomials of degree n - 1 on g remains unsolved. From the
results of Theorem 4.2, it appears that the solution of this problem may be
somewhat complicated. We suspect that a large varietyof extremal signatures
occur in this problem, and that consequently, it is difficult to construct
solutions explicitly.
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